更多>>精华博文推荐
更多>>人气最旺专家

潘粤明

领域:39健康网

介绍:美国、英国、荷兰、澳大利亚和日本等国家的图书馆也相继采取了RFID技术,并且取得了良好的实际效果。...

庄真由美

领域:中国日报网河南

介绍:经济立法和经济司法。利来老牌,利来老牌,利来老牌,利来老牌,利来老牌,利来老牌

w66com
本站新公告利来老牌,利来老牌,利来老牌,利来老牌,利来老牌,利来老牌
btf | 2019-01-20 | 阅读(934) | 评论(247)
现代型人口平均预期寿命进一步延长,世代更替缓慢,人口结构出现老龄化,死亡率上升。【阅读全文】
利来老牌,利来老牌,利来老牌,利来老牌,利来老牌,利来老牌
pqw | 2019-01-20 | 阅读(797) | 评论(748)
汽油和车这两种商品又是什么关系?一方的价格变动时,对相关商品的需求量有什么影响?两种商品组合使用,满足人们的某种需要假如C和D是一对互补品互补商品之间价格与需求成反向变动C价格—C需求量—D需求量C价格—C需求量—D需求量3、价格变动对相关商品的需求有影响一商品价格上涨时,其互补品的需求减少,反之则增加。【阅读全文】
1xt | 2019-01-20 | 阅读(260) | 评论(703)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
x1w | 2019-01-20 | 阅读(614) | 评论(829)
望大家配合,以营造出一个优秀、和谐的班集体!第十一学习小组组长整改措施我的职位地理科代表我的职责1、了解全班同学对本学科的认识及学习情况,及时向班主任和科任教师汇报;2、组织好全班对本学科的学习经验的交流;3、组织开展评学评比教学活动,并向科任老师反映、汇报;4、组织各小组长搞好作业本的收法及记载的工作,并按时收发作业本,记载作业的完成情况。【阅读全文】
9wc | 2019-01-20 | 阅读(291) | 评论(859)
①报价宝免费10条报价机会领取流程:用户在页面查看大企业采购信息,进入具体采购需求页面后点击“立即报价”按钮,系统自动赠送10条免费报价机会。【阅读全文】
f00 | 2019-01-19 | 阅读(854) | 评论(971)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
klc | 2019-01-19 | 阅读(98) | 评论(273)
处置建议一、官方升级Oracle官方已经在本次的关键补丁更新(CPU)中修复了该漏洞,强烈建议受影响的用户尽快升级更新进行防护。【阅读全文】
itv | 2019-01-19 | 阅读(279) | 评论(700)
一、对生活消费的影响学校超市门口(陈杰和同学杨凯从超市买东西出来)杨凯:饮料涨价了,饮料以前3元/瓶,现在涨到5元/瓶了。【阅读全文】
利来老牌,利来老牌,利来老牌,利来老牌,利来老牌,利来老牌
pbh | 2019-01-19 | 阅读(71) | 评论(923)
PAGE第一章导数及其应用单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则f′(x0)等于(  ).A.B.C.1D.-12.等于(  ).A.-2ln2B.2ln2C.-ln2D.3.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  ).A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+24.抛物线在点Q(2,1)处的切线方程为(  ).A.-x+y+1=0B.x+y-3=0C.x-y+1=0D.x+y-1=05.函数f(x)=x3-2x+3的图象在x=1处的切线与圆x2+y2=8的位置关系是(  ).A.相切B.相交且过圆心C.相交但不过圆心D.相离6.若(2x-3x2)dx=0,则k等于(  ).A.0B.1C.0或1D.7.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  ).A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>68.函数f(x)的图象如图所示,下列数值排序正确的是(  ).A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)9.已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  ).A.B.C.D.10.若曲线在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于(  ).A.64B.32C.16D.8二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.经过点(2,0)且与曲线相切的直线方程为____________.12.三次函数f(x),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)=__________.13.在区间上,函数f(x)=x2+px+q与在同一点处取得相同的极小值,那么函数f(x)在上的最大值为__________.14.函数y=x2(x>0)的图象在点(ak,)处的切线与x轴交点的横坐标为ak+1,其中k∈N+,若a1=16,则a1+a3+a5的值是________.15.下列四个命题中正确的命题的个数为________.①若,则f′(0)=0;②若函数f(x)=2x2+1图象上与点(1,3)邻近的一点为(1+Δx,3+Δy),则;③加速度是动点位移函数s(t)对时间t的导数;④曲线y=x3在(0,0)处没有切线.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)求由曲线y=2x-x2,y=2x2-4x所围成的封闭图形的面积.17.(15分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. 参考答案1.答案:D 原等式可化为=-f′(x0)=1,因此f′(x0)=-答案:D =ln4-ln2=答案:D f′(x)=4x3,∴f(x)=x4+k.又f(1)=3,∴k=2,∴f(x)=x4+答案:A ,∴,又切线过点Q(2,1),∴切线方程为y-1=x-2,即-x+y-1=答案:C 切线方程为x-y+1=0,圆心到直线的距离为,所以直线与圆相交但不过圆心.6.答案:C 因为(x2-x3)′=2x-3x2,所以(2x-3x2)dx=(x2-x3)=k2-k3=0.所以k=0或k=答案:D f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,所以Δ=4a2-4×3×(a即a2-3a-18>0.解得a>6或a8.答案:B f′(2),f′(3)是x分别为2,3时对应图象上点的切线的斜率,f(3)-f(2)=,∴f(3)-f(2)是图象上x为2和3对应两点连线的斜率,故选答案:D ∵,∴-1≤y′<0,即曲线在点P处的切线的斜率-1≤k<0,∴-1≤tanα<0,又α[0,π),∴π≤α<π.10.答案:A ,∴切线斜率,切线方程是(x-a),令x=0,得,令【阅读全文】
alh | 2019-01-18 | 阅读(779) | 评论(589)
峰会期间,安全狗作为峰会的信息化支撑与技术保障单位之一,派驻了专业技术人员,并依托自身强大的云安全产品体系,和专业的技术能力与职业精神,全程护航峰会的举行,圆满完成了此次峰会的网络安全保障工作!【阅读全文】
9hz | 2019-01-18 | 阅读(191) | 评论(164)
(三)知难而上,锐意进取,开拓计生工作新局面今年是我县进入省计生工作先进二档市县的最后一年,为了切实推动我县计生工作,确保顺利进入先进行列,根据县委的指示,结合我县实际,制定了更加严格的奖惩制度,完善和落实利益导向机制。【阅读全文】
b9q | 2019-01-18 | 阅读(919) | 评论(268)
预计“十一·五完成后,我国将有具有自主知识产权的国产大产能高得率制浆关键设备可进入市场[91。【阅读全文】
8hd | 2019-01-18 | 阅读(842) | 评论(270)
“这是目前为止,给他报的最贵的兴趣班。【阅读全文】
b8b | 2019-01-17 | 阅读(507) | 评论(740)
第二条本网站充分尊重原创作者的著作权和其他知识产权(若有)。【阅读全文】
鲁中网
qn8 | 2019-01-17 | 阅读(752) | 评论(953)
5.在比例尺为1:40000的工程示意图上,2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为,它的实际长度约为()A....=谈谈你的收获与体会小结与思考*【阅读全文】
共5页

友情链接,当前时间:2019-01-20

利来娱乐w66 w66.利来国际 利来国际老牌 w66 利来娱乐网址
利来国际www.w66com 利来国际老牌博彩手机 利来国际w66娱乐平台 利来国际旗舰厅app 利来娱乐国际ag旗舰厅
利来国际官网平台 w66利来 w66.com 利来国际最老牌 利来国际娱乐
利来国际老牌博彩 利来国际娱乐 w66利来国际 w66. 利来国际公司
大余县| 凌海市| 东莞市| 绥滨县| 巩义市| 宣汉县| 黑山县| 茂名市| 腾冲县| 潜江市| 尚志市| 咸阳市| 竹溪县| 赞皇县| 西峡县| 九江市| 崇左市| 商洛市| 礼泉县| 延津县| 泰宁县| 舟山市| 古交市| 台北市| 葫芦岛市| 敦化市| 集安市| 繁昌县| 砀山县| 宜兴市| 慈利县| 普定县| 怀安县| 绥中县| 任丘市| 都匀市| 大渡口区| 彩票| 从江县| 洪洞县| 商丘市| http://m.62594048.cn http://m.47784815.cn http://m.22077810.cn http://m.92022025.cn http://m.59603932.cn http://m.98485319.cn